Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Zeitschriftenartikel

Model Systems in Heterogeneous Catalysis: Towards designing and understanding of structure and electronic properties

MPG-Autoren
/persons/resource/persons84696

Pan,  Qiushi
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons137075

Li,  Linfei
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22106

Shaikhutdinov,  Shamil K.
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21534

Fujimori,  Yuichi
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

(Kein Zugriff möglich)

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pan, Q., Li, L., Shaikhutdinov, S. K., Fujimori, Y., Hollerer, M., Sterrer, M., et al. (2017). Model Systems in Heterogeneous Catalysis: Towards designing and understanding of structure and electronic properties. Faraday Discussions. doi:10.1039/C7FD00209B.


Zusammenfassung
We discuss in this paper two case studies related to nano-particle catalyst systems: one concerns a model system for the Cr/SiO2 Phillips catalyst for ethylene polymerization. Here we present XPS data to complement the previously published TPD, IRAS and reactivity studies to elucidate the electronic structure of the system in some detail. The second case study provides additional information on Au nano-particles supported on ultrathin MgO(100)/Ag(100) films where we had observed a specific activity of the particles rim at the metal-oxide interface with respect to CO2 activation and oxalate formation, obviously connected to electron transfer through the MgO film from the metal substrate underneath. Here we present XPS and Auger data which allow a detailed analysis of the observed chemical shifts. This analysis corroborates previous findings deduced via STM.