English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The opposition effect of 67P/Churyumov–Gerasimenko on post-perihelion Rosetta images

MPS-Authors
/persons/resource/persons104212

Sierks,  Holger
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons140545

Deller,  Jakob
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hasselmann, P. H., Barucci, M. A., Fornasier, S., Feller, C., Deshapriya, J. D. P., Fulchignoni, M., et al. (2017). The opposition effect of 67P/Churyumov–Gerasimenko on post-perihelion Rosetta images. Monthly Notices of the Royal Astronomical Society, 469(Suppl. 2), S550-S567. doi:10.1093/mnras/stx1834.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-8CC5-2
Abstract
High-resolution OSIRIS/Rosetta images of 67P/Churyumov–Gerasimenko acquired on the night run of 2016 April 9–10 show, at large scale, an opposition effect (OE) spot sweeping across Imhotep as the phase angle ranges from 0° to 17°. In this work, we fitted the phase curve of the whole surface imaged as well as three particular features using both the linear–exponential and Hapke models. These features encompass different types of spectral behaviour: a circular mesa, one venous structure and an assemblage of bright spots, going from red to blue colours. Both the Hapke and linear–exponential parameters indicate a stepwise sharpening of the OE from bright spots to circular mesa. Yet a very broad nonlinear phase curve is verified and no sign of sharp OE associated with a coherent-backscattering mechanism is observed. We estimate that the 67P surface is dominated by opaque, desiccated and larger-than-wavelength irregular grains. Veins and bright spots display photometric properties consistent with surfaces becoming slightly brighter as they are enriched by high-albedo ice grains. We also report the estimation of normal albedo for all cometary regions observed throughout the image sequence. Comparison to pre-perihelion results indicates that far better insolation of northern brighter regions, i.e. Hapi, Hathor and Seth, is sufficient to explain mismatches on the photometric parameters. However, metre-scale photometric analysis of the Imhotep–Ash boundary area advocates for mild darkening (<7 per cent) of the surface at local scale.