English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The surface wave environment in the GATE B/C Scale - Phase III

MPS-Authors
/persons/resource/persons37172

Hasselmann,  Klaus
MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Cardone, V., Carlson, H., Ewing, J. A., Hasselmann, K., Lazanoff, S., McLeish, W., et al. (1981). The surface wave environment in the GATE B/C Scale - Phase III. Journal of Physical Oceanography, 11, 1280-1293. doi:10.1175/1520-0485(1981)011<1280:TSWEIT>2.0.CO;2.


Cite as: https://hdl.handle.net/21.11116/0000-0008-7BAE-B
Abstract
The surface wave environment in the GATE B/C scale is described from wave measurements made from buoys and aircraft during Phase III (September 1974). Particular emphasis is given to the wave measurements made from the pitch-roll buoy deployed in the B-scale array from the ship Gilliss and a similar buoy deployed in the C-scale array from Quadra. Reduction of the pitch-roll buoy measurements provided estimates of the one-dimensional wave spectrum as well as of the mean direction and spread of wave energy as a function of frequency. The data clearly revealed the importance of external forcing on the wave climate in GATE. Most of the wave energy present in the GATE areas was found to be swell imported from the trade wind circulations of both hemispheres and from an intense extratropical cyclone which crossed the North Atlantic at high latitudes early in Phase III. Locally generated waves were clearly evident in the wave spectra, but their energy level way have been modulated significantly by the low-frequency swell. The GATE wave data set can provide a powerful test of contemporary numerical wave-prediction models. The present study defines the, attributes which are required of such models for meaningful application to the GATE needs.