Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

MPG-Autoren
/persons/resource/persons37156

Giorgetta,  Marco A.
Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

gmd-10-4477-2017.pdf
(Verlagsversion), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., et al. (2017). DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models. Geoscientific Model Development, 10, 4477-4509. doi:10.5194/gmd-10-4477-2017.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-8F3A-4
Zusammenfassung
Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier-Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system