English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Catalytic Reductive Pinacol-Type Rearrangement of Unactivated 1,2-Diols through a Concerted, Stereoinvertive Mechanism

MPS-Authors
/persons/resource/persons188241

Drosos,  Nikolaos
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons200127

Cheng,  Gui-Juan
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons188234

Özkal,  Erhan
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons188394

Cacherat,  Bastien
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons145542

Morandi,  Bill
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Drosos, N., Cheng, G.-J., Özkal, E., Cacherat, B., Thiel, W., & Morandi, B. (2017). Catalytic Reductive Pinacol-Type Rearrangement of Unactivated 1,2-Diols through a Concerted, Stereoinvertive Mechanism. Angewandte Chemie International Edition, 56(43), 13377-13381. doi:10.1002/anie.201704936.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002E-9D50-0
Abstract
A catalytic pinacol-type reductive rearrangement reaction of internal 1,2-diols is reported herein. Several scaffolds not usually amenable to pinacol-type reactions, such as aliphatic secondary–secondary diols, undergo the transformation well without the need for prefunctionalization. The reaction uses a simple boron catalyst and two silanes and proceeds through a concerted, stereoinvertive mechanism that enables the preparation of highly enantiomerically enriched products. Computational studies have been used to rationalize the preference for migration over direct deoxygenation.