English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The global meter-level shape model of comet 67P/Churyumov-Gerasimenko

MPS-Authors
/persons/resource/persons123097

Agarwal,  Jessica
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons160269

Güttler,  Carsten
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104030

Kramm,  J. Rainer
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104212

Sierks,  Holger
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104259

Tubiana,  Cecilia
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Preusker, F., Scholten, F., Matz, K.-D., Roatsch, T., Hviid, S. F., Mottola, S., et al. (2017). The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 607: L 1. doi:10.1051/0004-6361/201731798.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002E-97BB-3
Abstract
We performed a stereo-photogrammetric (SPG) analysis of more than 1500 Rosetta/OSIRIS NAC images of comet 67P/Churyumov-Gerasimenko (67P). The images with pixel scales in the range 0.2−3.0 m/pixel were acquired between August 2014 and February 2016. We finally derived a global high-resolution 3D description of 67P’s surface, the SPG SHAP7 shape model. It consists of about 44 million facets (1−1.5 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. Although some images were taken after perihelion, the SPG SHAP7 shape model can be considered a pre-periheliondescription and replaces the previous SPG SHAP4S shape model. From the new shape model, some measures for 67P with very low 3σ uncertainties can be retrieved: 18.56 km3 ± 0.02 km3 for the volume and 537.8 kg/m3 ± 0.7 kg/m3 for the mean density assuming a mass value of 9.982 × 1012 kg.