English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko

MPS-Authors
/persons/resource/persons104212

Sierks,  Holger
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons123097

Agarwal,  Jessica
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons140545

Deller,  Jakob
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons160269

Güttler,  Carsten
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons192389

Shi,  Xian
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104259

Tubiana,  Cecilia
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104271

Vincent,  Jean-Baptiste
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Penasa, L., Massironi, M., Naletto, G., Simioni, E., Ferrari, S., Pajola, M., et al. (2017). A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 469(Suppl. 2), S741-S754. doi:10.1093/mnras/stx2899.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002E-A42F-9
Abstract
We provide a three-dimensional model of the inner layered structure of comet 67P based on the hypothesis of an extended layering independently wrapping each lobe. A large set of terrace orientations was collected on the latest shape model and then used as a proxy for the local orientation of the surfaces of discontinuity which defines the layers. We modelled the terraces as a family of concentric ellipsoidal shells with fixed axis ratios, producing a model that is completely defined by just eight free parameters. Each lobe of 67P has been modelled independently, and the two sets of parameters have been estimated by means of non-linear optimization of the measured terrace orientations. The proposed model is able to predict the orientation of terraces, the elongation of cliffs, the linear traces observed in the Wosret and Hathor regions and the peculiar alignment of boulder-like features which has been observed in the Hapi region, which appears to be related to the inner layering of the big lobe. Our analysis allowed us to identify a plane of junction between the two lobes, further confirming the independent nature of the lobes. Our layering models differ from the best-fitting topographic ellipsoids of the surface, demonstrating that the terraces are aligned to an internal structure of discontinuities, which is unevenly exposed on the surface, suggesting a complex history of localized material removal from the nucleus.