English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer's disease.

MPS-Authors
/persons/resource/persons15710

Riedel,  D.
Facility for Electron Microscopy, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

2520340_Suppl_1.pdf
(Supplementary material), 4MB

2520340_Suppl_2.pdf
(Supplementary material), 113KB

Citation

Venegas, C., Kumar, S., Franklin, B. S., Dierkes, T., Brinkschulte, R., Tejera, D., et al. (2017). Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer's disease. Nature, 552(7685), 355-361. doi:10.1038/nature25158.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002E-A451-A
Abstract
The spreading of pathology within and between brain areas is a hallmark of neurodegenerative disorders. In patients with Alzheimer's disease, deposition of amyloid-beta is accompanied by activation of the innate immune system and involves inflammasome-dependent formation of ASC specks in microglia. ASC specks released by microglia bind rapidly to amyloid-beta and increase the formation of amyloid-beta oligomers and aggregates, acting as an inflammation-driven cross-seed for amyloid-beta pathology. Here we show that intrahippocampal injection of ASC specks resulted in spreading of amyloid-beta pathology in transgenic double-mutant APP(Swe)PSEN1(dE9) mice. By contrast, homogenates from brains of APP(Swe)PSEN1(dE9) mice failed to induce seeding and spreading of amyloid-beta pathology in ASC-deficient APP(Swe)PSEN1(dE9) mice. Moreover, co-application of an anti-ASC antibody blocked the increase in amyloid-beta pathology in APP(Swe)PSEN1(dE9) mice. These findings support the concept that inflammasome activation is connected to seeding and spreading of amyloid-beta pathology in patients with Alzheimer's disease.