Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Levitated Plasmonic Nanoantennas in an Aqueous Environment

MPG-Autoren
/persons/resource/persons216241

Tuna,  Yazgan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201107

Kim,  Ji Tae
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
University of Hong Kong, Dept Mech Engn;

/persons/resource/persons216234

Liu,  Hsuan-Wei
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201175

Sandoghdar,  Vahid
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tuna, Y., Kim, J. T., Liu, H.-W., & Sandoghdar, V. (2017). Levitated Plasmonic Nanoantennas in an Aqueous Environment. ACS Nano, 11, 7674-7678. doi:10.1021/acsnano.7b03310.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-806B-7
Zusammenfassung
We report on the manipulation of a plasmonic nanoantenna in an aqueous solution using an electrostatic trap created between a glass nanopipette and a substrate. By scanning a trapped gold nanosphere in the near field of a single colloidal quantum dot embedded under the substrate surface, we demonstrate about 8-fold fluorescence enhancement over a lateral full width at half maximum of about 45 nm. We analyze our results with the predictions of numerical electromagnetic simulations under consideration of the electrostatic free energy in the trap. Our approach could find applications in a number of experiments, where plasmonic effects are employed at liquid solid interfaces.