English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Characterization and shaping of the time-frequency Schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers

MPS-Authors
/persons/resource/persons201060

Finger,  M. A.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201100

Joly,  N. Y.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  P. St. J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201034

Chekhova,  M. V.
Quantum Radiation, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;
Chekhova Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Optical Technologies, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Finger, M. A., Joly, N. Y., Russell, P. S. J., & Chekhova, M. V. (2017). Characterization and shaping of the time-frequency Schmidt mode spectrum of bright twin beams generated in gas-filled hollow-core photonic crystal fibers. PHYSICAL REVIEW A, 95(5): 053814. doi:10.1103/PhysRevA.95.053814.


Cite as: https://hdl.handle.net/21.11116/0000-0000-7F65-1
Abstract
We vary the time-frequency mode structure of ultrafast pulse-pumped modulational instability (MI) twin beams in an argon-filled hollow-core kagome-style photonic crystal fiber by adjusting the pressure, pump pulse chirp, fiber length, and parametric gain. Compared to solid-core systems, the pressure-dependent dispersion landscape brings increased flexibility to the tailoring of frequency correlations, and we demonstrate that the pump pulse chirp can be used to tune the joint spectrum of femtosecond-pumped.(3) sources. We also characterize the resulting mode content, not only by measuring the multimode second-order correlation function g((2)), but also by directly reconstructing the shapes and weights of time-frequency Schmidt (TFS) modes. We show that the number of modes directly influences the shot-to-shot pulse-energy and spectral-shape fluctuations in MI. Using this approach we control and monitor the number of TFS modes within the range from 1.3 to 4 using only a single fiber.