Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Tunable geometrical frustration in magnonic vortex crystals

MPG-Autoren
/persons/resource/persons213992

Hänze,  M.
Max-Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany;
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons214000

Schulte,  B.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons141017

Meier,  G.
The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.;
Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

s41598-017-17480-1.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Behncke, C., Adolff, C. F., Wintz, S., Hänze, M., Schulte, B., Weigand, M., et al. (2018). Tunable geometrical frustration in magnonic vortex crystals. Scientific Reports, 8: 186. doi:10.1038/s41598-017-17480-1.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-18A1-F
Zusammenfassung
A novel approach to investigate geometrical frustration is introduced using two-dimensional magnonic vortex crystals. The frustration of the crystal can be manipulated and turned on and off dynamically on the timescale of milliseconds. The vortices are studied using scanning transmission x-ray microscopy and ferromagnetic resonance spectroscopy. They are arranged analogous to the nanomagnets in artificial spin-ice systems. The polarization state of the vortices is tuned in a way that geometrical frustration arises. We demonstrate that frustrated polarization states and non-frustrated states can be tuned to the crystal by changing the frequency of the state formation process.