Benutzerhandbuch Datenschutzhinweis Impressum Kontakt





Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks

Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Lara-Estrada, L. D., Rasche, L., Sucar, L. E., & Schneider, U. (2018). Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks. Land, 7 (1): 4, pp. 1-13. doi:10.3390/land7010004.

Climate data availability plays a key role in development processes of policies, services, and planning in the agricultural sector. However, data at the spatial or temporal resolution required is often lacking, or certain values are missing. In this work, we propose to use a Bayesian network approach to generate data for missing variables. As a case study, we use relative humidity, which is an important indicator of land suitability for coffee production. For the model, we first extracted climate data for the variables precipitation, maximum and minimum air temperature, wind speed, solar radiation and relative humidity from the surface reanalysis dataset Climate Forecast System Reanalysis. We then used machine learning algorithms to define the model structure and parameters from the relationships of the variables found in the dataset. Precipitation, maximum and minimum air temperature, wind speed, and solar radiation are then used as proxy variables to infer missing values for monthly relative humidity and relative humidity for the driest month. For this, we used both complete and incomplete initial data. In both scenarios of data availability, the comparison of estimated and measured values of relative humidity shows a high level of agreement. We conclude that using Bayesian Networks is a practical solution to estimate relative humidity for coffee agricultural planning.