Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Leidenfrost drops cooling surfaces: Theory and interferometric measurement

MPG-Autoren
/persons/resource/persons221664

van Limbeek,  Michiel A. J.
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons221800

Klein Schaarsberg,  Martin H.
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons221559

Sun,  Chao
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

van Limbeek, M. A. J., Klein Schaarsberg, M. H., Sobac, B., Rednikov, A., Sun, C., Colinet, P., et al. (2017). Leidenfrost drops cooling surfaces: Theory and interferometric measurement. Journal of Fluid Mechanics, 827, 614-639. doi:10.1017/jfm.2017.425.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-2C48-F
Zusammenfassung
When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower surface temperatures, where the drop is in direct contact with the solid surface. A commonly made assumption is that this solid surface is isothermal, which is at least questionable for materials of low thermal conductivity, resulting in an overestimation of the surface temperature and heat transfer for such systems. Here we aim to obtain more quantitative insight into how surface cooling affects the Leidenfrost effect. We develop a technique based on Mach-Zehnder interferometry to investigate the surface cooling of a quartz plate by a Leidenfrost drop. The three-dimensional plate temperature field is reconstructed from interferometric data by an Abel inversion method using a basis function expansion of the underlying temperature field. By this method we are able to quantitatively measure the local cooling inside the plate, which can be as strong as 80 K. We develop a numerical model which shows good agreement with experiments and enables extending the analysis beyond the experimental parameter space. Based on the numerical and experimental results we quantify the effect of surface cooling on the Leidenfrost phenomenon. By focusing on the role of the solid surface we provide new insights into the Leidenfrost effect and demonstrate how to adjust current models to account for non-isothermal solids and use previously obtained isothermal scaling laws for the neck thickness and evaporation rate.