Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Tuning the adsorption energy of methanol molecules along Ni-N-doped carbon phase boundaries via the Mott-Schottky effect for highly efficient dehydrogenation of gas-phase methanol

MPG-Autoren
/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Xue, Z.-H., Han, J.-T., Feng, W.-J., Yu, Q.-Y., Li, X.-H., Antonietti, M., et al. (2018). Tuning the adsorption energy of methanol molecules along Ni-N-doped carbon phase boundaries via the Mott-Schottky effect for highly efficient dehydrogenation of gas-phase methanol. Angewandte Chemie International Edition, 57(10), 2697-2701. doi:10.1002/anie.201713429.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-3AE9-9
Zusammenfassung
Engineering the adsorption of molecules on active sites is an integral and challenging part for the design of highly efficient transition-metal-based catalysts for methanol dehydrogenation. Here we report a Mott-Schottky catalyst composed of Ni nanoparticles and tailorable nitrogen-doped carbon-foam (Ni/NCF) and thus tunable adsorption energy for highly efficient and selective dehydrogenation of gas-phase methanol to hydrogen and CO even under relatively high weight hourly space velocities (WHSV). Both theoretical and experimental results reveal the key role of the rectifying contact at the Ni/NCF boundaries in tailoring the electron density of Ni species and enhancing the absorption energies of methanol molecules, which leads to a remarkably high turnover frequency (TOF) value (356 mol methanol mol−1 Ni h−1 at 350 °C), 10-fold outpacing the bench-marked transition-metal catalysts in the literature.