Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Absence of Ergodicity without Quenched Disorder: From Quantum Disentangled Liquids to Many-Body Localization

MPG-Autoren
/persons/resource/persons145694

Moessner,  Roderich
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Smith, A., Knolle, J., Moessner, R., & Kovrizhin, D. L. (2017). Absence of Ergodicity without Quenched Disorder: From Quantum Disentangled Liquids to Many-Body Localization. Physical Review Letters, 119(17): 176601. doi:10.1103/PhysRevLett.119.176601.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-3AFE-2
Zusammenfassung
We study the time evolution after a quantum quench in a family of models whose degrees of freedom are fermions coupled to spins, where quenched disorder appears neither in the Hamiltonian parameters nor in the initial state. Focusing on the behavior of entanglement, both spatial and between subsystems, we show that the model supports a state exhibiting combined area and volume-law entanglement, being characteristic of the quantum disentangled liquid. This behavior appears for one set of variables, which is related via a duality mapping to another set, where this structure is absent. Upon adding density interactions between the fermions, we identify an exact mapping to an XXZ spin chain in a random binary magnetic field, thereby establishing the existence of many-body localization with its logarithmic entanglement growth in a fully disorder-free system.