Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Characterization of the nucleic acid binding region of the intermediate filament protein vimentin by fluorescence polarization

MPG-Autoren
/persons/resource/persons95345

Shoeman,  Robert L.
Coherent diffractive imaging, Max Planck Institute for Medical Research, Max Planck Society;
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;
Analytical Protein Biochemistry, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shoeman, R. L., Hartig, R., & Traub, P. (1999). Characterization of the nucleic acid binding region of the intermediate filament protein vimentin by fluorescence polarization. Biochemistry, 38(51), 16802-16809. doi:10.1021/bi991654rS0006-2960(99)01654-2.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-4016-F
Zusammenfassung
Employing deletion mutant proteins and fluorescein-labeled oligodeoxyribonucleotides in a fluorescence polarization assay, the nucleic acid binding site of the intermediate filament (IF) subunit protein vimentin was localized to the middle of the arginine-rich, non-alpha-helical, N-terminal head domain. While deletion of the first few N-terminal residues (up to amino acid 17) had almost no effect, deletions of residues 25-64 or 25-68 essentially abolished the binding of nucleic acids by the respective proteins. Proteins with smaller deletions, of residues 25-39 or 43-68, were still able to bind nucleic acids quite well at low ionic strength, but only the proteins containing the first DNA-binding wing (residues 27-39) retained the ability to stably bind nucleic acids at physiological ionic strength. These results were confirmed by data obtained with two synthetic peptides whose sequences correspond to the smaller deletions. Nitration experiments showed that one or more of the tyrosines in the head domain are responsible for the stable binding by intercalation. Interestingly, the residues responsible for binding nucleic acids can be deleted without major influence on the in vivo polymerization properties of the mutant proteins. Only the protein with the largest internal deletion, of residues 25-68, failed to form filaments in vivo. Since the N-terminal head domains of IF proteins are largely exposed on the filament surface, but nevertheless essential for filament assembly, these results support the model that the middle of the head domain of vimentin may loop out from the filament surface and thus be available for interactions with other cellular structures or molecules.