Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

PARMA. A full text search based method for matching non-patent literature citations with scientific reference databases. A pilot study.

MPG-Autoren
/persons/resource/persons215382

Knaus,  Johannes
Big Data Analytics Group, Max Planck Digital Library, Max Planck Society;

/persons/resource/persons96338

Palzenberger,  Margit
Big Data Analytics Group, Max Planck Digital Library, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

mpdl_rio_parma_techrep_201802.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)

mpdl_rio_parma_techrep_201802_supp01.xlsx
(Ergänzendes Material), 36KB

mpdl_rio_parma_techrep_201802_supp02.txt
(Ergänzendes Material), 762KB

mpdl_rio_parma_techrep_201802_supp03.xml
(Ergänzendes Material), 2KB

mpdl_rio_parma_techrep_201802_supp04.xml
(Ergänzendes Material), 2KB

Zitation

Knaus, J., & Palzenberger, M. (2018). PARMA. A full text search based method for matching non-patent literature citations with scientific reference databases. A pilot study. doi:10.17617/2.2540157.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-70A4-8
Zusammenfassung
Patent databases contain large amounts of (almost) unstructured references to non-patent literature (NPL). To identify these references is a general research request, as they are an important indicator for determining and quantifying various relationships between science and industry. In the present pilot study, we introduce a Patent reference matching method (PARMA) that is able to process a wide range of patent records by using a combination of full text search technology with filtering and matching routines in an RDBMS. Results show that the approach establishes a solid foundation for future analytic studies on the topic.