English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparison of different aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BEX589.pdf
(Publisher version), 2MB

BEX589D.pdf
(Preprint), 2MB

Supplementary Material (public)

BEX589s1.pdf
(Supplementary material), 772KB

Citation

Saturno, J., Pöhlker, C., Massabo, D., Brito, J., Carbone, S., Cheng, Y. F., et al. (2017). Comparison of different aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmospheric Measurement Techniques, 10(8), 2837-2850. doi:10.5194/amt-10-2837-2017.


Cite as: https://hdl.handle.net/21.11116/0000-0000-73A5-4
Abstract
Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June–September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm−1, with a maximum of 15.9 Mm−1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.