日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Evolutionary stability of antibiotic protection in a defensive symbiosis

MPS-Authors
/persons/resource/persons81175

Engl,  Tobias
Max Planck Research Group Insect Symbiosis, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3992

Kroiss,  Johannes
Max Planck Research Group Insect Symbiosis, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons49282

Kai,  Marco
Research Group Mass Spectrometry, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons39357

Nechitaylo,  Taras Y.
Max Planck Research Group Insect Symbiosis, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4203

Svatoš,  Aleš
Research Group Mass Spectrometry, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3954

Kaltenpoth,  Martin
Max Planck Research Group Insect Symbiosis, MPI for Chemical Ecology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)

KAL080s1.zip
(付録資料), 10MB

引用

Engl, T., Kroiss, J., Kai, M., Nechitaylo, T. Y., Svatoš, A., & Kaltenpoth, M. (2018). Evolutionary stability of antibiotic protection in a defensive symbiosis. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1719797115.


引用: https://hdl.handle.net/21.11116/0000-0000-78E5-7
要旨
The increasing resistance of human pathogens severely limits the efficacy of antibiotics in medicine, yet many animals, including solitary beewolf wasps, successfully engage in defensive alliances with antibiotic-producing bacteria for millions of years. Here, we report on the in situ production of 49 derivatives belonging to three antibiotic compound classes (45 piericidin derivatives, 3 streptochlorin derivatives, and nigericin) by the symbionts of 25 beewolf host species and subspecies, spanning 68 million years of evolution. Despite a high degree of qualitative stability in the antibiotic mixture, we found consistent quantitative differences between species and across geographic localities, presumably reflecting adaptations to combat local pathogen communities. Antimicrobial bioassays with the three main components and in silico predictions based on the structure and specificity in polyketide synthase domains of the piericidin biosynthesis gene cluster yield insights into the mechanistic basis and ecoevolutionary implications of producing a complex mixture of antimicrobial compounds in a natural setting.