日本語
 
User Manual Privacy Policy ポリシー/免責事項 連絡先
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation

MPS-Authors
/persons/resource/persons84081

Meilinger,  T
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Social & Spatial Cognition, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192615

Strickrodt,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

URL

Link
(全文テキスト(全般))

フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Meilinger, T., Strickrodt, M., & Bülthoff, H. (2016). Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition, 155, 77-95. doi:10.1016/j.cognition.2016.06.003.


引用: http://hdl.handle.net/21.11116/0000-0000-796B-1
要旨
Two classes of space define our everyday experience within our surrounding environment: vista spaces, such as rooms or streets which can be perceived from one vantage point, and environmental spaces, for example, buildings and towns which are grasped from multiple views acquired during locomotion. However, theories of spatial representations often treat both spaces as equal. The present experiments show that this assumption cannot be upheld. Participants learned exactly the same layout of objects either within a single room or spread across multiple corridors. By utilizing a pointing and a placement task we tested the acquired configurational memory. In Experiment 1 retrieving memory of the object layout acquired in environmental space was affected by the distance of the traveled path and the order in which the objects were learned. In contrast, memory retrieval of objects learned in vista space was not bound to distance and relied on different ordering schemes (e.g., along the layout structure). Furthermore, spatial memory of both spaces differed with respect to the employed reference frame orientation. Environmental space memory was organized along the learning experience rather than layout intrinsic structure. In Experiment 2 participants memorized the object layout presented within the vista space room of Experiment 1 while the learning procedure emulated environmental space learning (movement, successive object presentation). Neither factor rendered similar results as found in environmental space learning. This shows that memory differences between vista and environmental space originated mainly from the spatial compartmentalization which was unique to environmental space learning. Our results suggest that transferring conclusions from findings obtained in vista space to environmental spaces and vice versa should be made with caution.