English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Resting-state functional MRI in an intraoperative MRI setting: proof of feasibility and correlation to clinical outcome of patients

MPS-Authors
/persons/resource/persons214625

Charyasz-Leks,  E
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Roder, C., Charyasz-Leks, E., Breitkopf, M., Decker, K., Ernemann, U., Klose, U., et al. (2016). Resting-state functional MRI in an intraoperative MRI setting: proof of feasibility and correlation to clinical outcome of patients. Journal of Neurosurgery, 125(2), 401-409. doi:10.3171/2015.7.JNS15617.


Cite as: https://hdl.handle.net/21.11116/0000-0000-7996-F
Abstract
OBJECTIVE The authors' aim in this paper is to prove the feasibility of resting-state (RS) functional MRI (fMRI) in an intraoperative setting (iRS-fMRI) and to correlate findings with the clinical condition of patients pre- and postoperatively. METHODS Twelve patients underwent intraoperative MRI-guided resection of lesions in or directly adjacent to the central region and/or pyramidal tract. Intraoperative RS (iRS)–fMRI was performed pre- and intraoperatively and was correlated with patients' postoperative clinical condition, as well as with intraoperative monitoring results. Independent component analysis (ICA) was used to postprocess the RS-fMRI data concerning the sensorimotor networks, and the mean z-scores were statistically analyzed. RESULTS iRS-fMRI in anesthetized patients proved to be feasible and analysis revealed no significant differences in preoperative z-scores between the sensorimotor areas ipsi- and contralateral to the tumor. A significant decrease in z-score (p < 0.01) was seen in patients with new neurological deficits postoperatively. The intraoperative z-score in the hemisphere ipsilateral to the tumor had a significant negative correlation with the degree of paresis immediately after the operation (r = −0.67, p < 0.001) and on the day of discharge from the hospital (r = −0.65, p < 0.001). Receiver operating characteristic curve analysis demonstrated moderate prognostic value of the intraoperative z-score (area under the curve 0.84) for the paresis score at patient discharge. CONCLUSIONS The use of iRS-fMRI with ICA-based postprocessing and functional activity mapping is feasible and the results may correlate with clinical parameters, demonstrating a significant negative correlation between the intensity of the iRS-fMRI signal and the postoperative neurological changes.