English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Volumetric imaging with homogenised excitation and static field at 9.4 T

MPS-Authors
/persons/resource/persons83973

Hoffmann,  J
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84405

Mirkes,  C
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84213

Shajan,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tse, D., Wiggins, C., Ivanov, D., Brenner, D., Hoffmann, J., Mirkes, C., et al. (2016). Volumetric imaging with homogenised excitation and static field at 9.4 T. Magnetic Resonance Materials in Physics, Biology and Medicine, 29(3), 333-345. doi:10.1007/s10334-016-0543-6.


Cite as: https://hdl.handle.net/21.11116/0000-0000-79C6-9
Abstract
Objectives To overcome the challenges of B0 and RF excitation inhomogeneity at ultra-high field MRI, a workflow for volumetric B0 and flip-angle homogenisation was implemented on a human 9.4 T scanner. Materials and methods Imaging was performed with a 9.4 T human MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a 16-channel parallel transmission system. B0- and B1-mapping were done using a dual-echo GRE and transmit phase-encoded DREAM, respectively. B0 shims and a small-tip-angle-approximation kT-points pulse were calculated with an off-line routine and applied to acquire T1- and T 2 * -weighted images with MPRAGE and 3D EPI, respectively. Results Over six in vivo acquisitions, the B0-distribution in a region-of-interest defined by a brain mask was reduced down to a full-width-half-maximum of 0.10 ± 0.01 ppm (39 ± 2 Hz). Utilising the kT-points pulses, the normalised RMSE of the excitation was decreased from CP-mode’s 30.5 ± 0.9 to 9.2 ± 0.7 with all B 1 + voids eliminated. The SNR inhomogeneities and contrast variations in the T1- and T 2 * -weighted volumetric images were greatly reduced which led to successful tissue segmentation of the T1-weighted image. Conclusion A 15-minute B0- and flip-angle homogenisation workflow, including the B0- and B1-map acquisitions, was successfully implemented and enabled us to reduce intensity and contrast variations as well as echo-planar image distortions in 9.4 T images.