English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Egocentric biases in comparative volume judgments of rooms

MPS-Authors
/persons/resource/persons192749

Saulton,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84088

Mohler,  B
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Space and Body Perception, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83891

Dodds,  TJ
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Space and Body Perception, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Ressource

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Saulton, A., Mohler, B., Bülthoff, H., & Dodds, T. (2016). Egocentric biases in comparative volume judgments of rooms. Journal of Vision, 16(6): 2, pp. 1-16. doi:10.1167/16.6.2.


Cite as: http://hdl.handle.net/21.11116/0000-0000-79E8-3
Abstract
The elongation of a figure or object can induce a perceptual bias regarding its area or volume estimation. This bias is notable in Piagetian experiments in which participants tend to consider elongated cylinders to contain more liquid than shorter cylinders of equal volume. We investigated whether similar perceptual biases could be found in volume judgments of surrounding indoor spaces and whether those judgments were viewpoint dependent. Participants compared a variety of computer-generated rectangular rooms with a square room in a psychophysical task. We found that the elongation bias in figures or objects was also present in volume comparison judgments of indoor spaces. Further, the direction of the bias (larger or smaller) depended on the observer's viewpoint. Similar results were obtained from a monoscopic computer display (Experiment 1) and stereoscopic head-mounted display with head tracking (Experiment 2). We used generalized linear mixed-effect models to model participants' volume judgments using a function of room depth and width. A good fit to the data was found when applying weight on the depth relative to the width, suggesting that participants' judgments were biased by egocentric properties of the space. We discuss how biases in comparative volume judgments of rooms might reflect the use of simplified strategies, such as anchoring on one salient dimension of the space.