English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sensory and optogenetically driven single-vessel fMRI

MPS-Authors
/persons/resource/persons133486

Yu,  X
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192829

He,  Y
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214940

Wang,  M
Research Group Translational Neuroimaging and Neural Control, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84805

Merkle,  H
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Yu, X., He, Y., Wang, M., Merkle, H., Dodd, S., Silva, A., et al. (2016). Sensory and optogenetically driven single-vessel fMRI. Nature methods, 13(4), 337-340. doi:10.1038/nmeth.3765.


Cite as: http://hdl.handle.net/21.11116/0000-0000-79F4-5
Abstract
Magnetic resonance imaging (MRI) sensitivity approaches vessel specificity. We developed a single-vessel functional MRI (fMRI) method to image the contribution of vascular components to blood oxygenation level–dependent (BOLD) and cerebral blood volume (CBV) fMRI signal. We mapped individual vessels penetrating the rat somatosensory cortex with 100-ms temporal resolution by MRI with sensory or optogenetic stimulation. The BOLD signal originated primarily from venules, and the CBV signal from arterioles. The single-vessel fMRI method and its combination with optogenetics provide a platform for mapping the hemodynamic signal through the neurovascular network with specificity at the level of individual arterioles and venules.