English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

How prior expectations shape multisensory perception

MPS-Authors
/persons/resource/persons214667

Gau,  R
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84112

Noppeney,  U
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Gau, R., & Noppeney, U. (2016). How prior expectations shape multisensory perception. NeuroImage, 124(Part A), 876-886. doi:10.1016/j.neuroimage.2015.09.045.


Cite as: http://hdl.handle.net/21.11116/0000-0000-7A44-B
Abstract
The brain generates a representation of our environment by integrating signals from a common source, but segregating signals from different sources. This fMRI study investigated how the brain arbitrates between perceptual integration and segregation based on top-down congruency expectations and bottom-up stimulus-bound congruency cues. Participants were presented audiovisual movies of phonologically congruent, incongruent or McGurk-MacDonald syllables that can be integrated into an illusory percept (e.g. "ti" percept for visual «ki» with auditory /pi/). They reported the syllable they perceived. Critically, we manipulated participants' top-down congruency expectations by presenting McGurk-MacDonald stimuli embedded in blocks of congruent or incongruent syllables. Behaviourally, participants were more likely to fuse audiovisual signals into an illusory McGurk-MacDonald percept in congruent than incongruent contexts. At the neural level, the left inferior frontal sulcus (lIFS) showed increased activations for bottom-up incongruent relative to congruent inputs. Moreover, lIFS activations were increased for physically identical McGurk-MacDonald signals, when participants segregated signals and reported their auditory percept. Critically, this activation increase for perceptual segregation was amplified when participants expected audiovisually incongruent signals based on prior sensory experience. Collectively, our results demonstrate that the lIFS combines top-down prior (in)congruency expectations with bottom-up (in)congruency cues to arbitrate between multisensory integration and segregation.