English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Specific white matter tissue microstructure changes associated with obesity

MPS-Authors
/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Ressource

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kullmann, S., Callaghan, M., Heni, M., Weiskopf, N., Scheffler, K., Häring, H.-U., et al. (2016). Specific white matter tissue microstructure changes associated with obesity. NeuroImage, 125, 36-44. doi:10.1016/j.neuroimage.2015.10.006.


Cite as: http://hdl.handle.net/21.11116/0000-0000-7A50-D
Abstract
Obesity-related structural brain alterations point to a consistent reduction in gray matter with increasing body mass index (BMI) but changes in white matter have proven to be more complex and less conclusive. Hence, more recently diffusion tensor imaging (DTI) has been employed to investigate microstructural changes in white matter structure. Altogether, these studies have mostly shown a loss of white matter integrity with obesity-related factors in several brain regions. However, the variety of these obesity-related factors, including inflammation and dyslipidemia, resulted in competing influences on the DTI indices. To increase the specificity of DTI results, we explored specific brain tissue properties by combining DTI with quantitative multi-parameter mapping in lean, overweight and obese young adults. By means of multi-parameter mapping, white matter structures showed differences in MRI parameters consistent with reduced myelin, increased water and altered iron content with increasing BMI in the superior longitudinal fasciculus, anterior thalamic radiation, internal capsule and corpus callosum. BMI-related changes in DTI parameters revealed mainly alterations in mean and axial diffusivity with increasing BMI in the corticospinal tract, anterior thalamic radiation and superior longitudinal fasciculus. These alterations, including mainly fiber tracts linking limbic structures with prefrontal regions, could potentially promote accelerated aging in obese individuals leading to an increased risk for cognitive decline.