English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

The CableRobot Simulator: Large Scale Motion Platform Based on Cable Robot Technology

MPS-Authors
/persons/resource/persons214578

Miermeister,  P
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192826

Lächele,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214584

Boss,  R
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84078

Masone,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192734

Schenk,  C
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84254

Tesch,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Space and Body Perception, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84009

Kerger,  M
Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84255

Teufel,  H
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Miermeister, P., Lächele, M., Boss, R., Masone, C., Schenk, C., Tesch, J., et al. (2016). The CableRobot Simulator: Large Scale Motion Platform Based on Cable Robot Technology. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3024-3029). Piscataway, NJ, USA: IEEE.


Cite as: http://hdl.handle.net/21.11116/0000-0000-7A6A-1
Abstract
This paper introduces the CableRobot simulator, which was developed at the Max Planck Institute for Biological Cybernetics in cooperation with the Fraunhofer Institute for Manufacturing Engineering and Automation IPA. The simulator is a completely novel approach to the design of motion simulation platforms in so far as it uses cables and winches for actuation instead of rigid links known from hexapod simulators. This approach allows to reduce the actuated mass, scale up the workspace significantly, and provides great flexibility to switch between system configurations in which the robot can be operated. The simulator will be used for studies in the field of human perception research and virtual reality applications. The paper dicusses some of the issues arising from the usage of cables and provides a system overview regarding kinematics and system dynamics as well as giving a brief introduction into possible application use cases.