English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Effects of vehicle- and task-related motion feedback on operator performance in teleoperation

MPS-Authors
/persons/resource/persons84033

Lächele,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84279

Venrooij,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84148

Pretto,  P
Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lächele, J., Venrooij, J., Pretto, P., & Bülthoff, H. (2016). Effects of vehicle- and task-related motion feedback on operator performance in teleoperation. In Leveraging Emerging Technologies for Future Capabilities (pp. 3310-3316). Red Hook, NY, USA: Curran.


Cite as: https://hdl.handle.net/21.11116/0000-0000-7A9A-A
Abstract
In this paper we present the results of two experiments performed using a teleoperation setup where operators control a simulated quadrotor in a virtual environment while perceiving visual and inertial motion feedback. Participants of this study performed a series of precision hover tasks. The experiments focused on how different motion feedback definitions affect operator performance and control effort. In the first experiment the effect of including different components of the quadrotor motion in the motion feedback was studied (referred to as "vehicle-related" motion feedback). In the second experiment, the effect of including task-related information in the motion feedback, in the form of a roll motion representing the offset between the desired and actual quadrotor position, was investigated (referred to as "task-related" motion feedback). In both experiments the effects of degraded visual quality was investigated. For both vehicle-related lateral motion feedback and task-related roll motion feedback, we found a significant increase in operator performance. Vehicle-related roll motion feedback showed no effect on operator performance. Control effort, defined as the overall stick deflection during the trials, decreased in vehicle-state roll motion conditions and increased in task-related motion feedback. The results show the applicability and benefits of providing task-related motion feedback in teleoperation.