Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Unlocking neural population non-stationarity using a hierarchical dynamics model

MPG-Autoren
/persons/resource/persons214725

Park,  M
Former Research Group Neural Computation and Behaviour, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84066

Macke,  J
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Center of Advanced European Studies and Research (caesar), Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Park, M., Bohner, G., & Macke, J. (2016). Unlocking neural population non-stationarity using a hierarchical dynamics model. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 28 (pp. 145-153). Red Hook, NY, USA: Curran.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-7AB8-8
Zusammenfassung
Neural population activity often exhibits rich variability. This variability is thought to arise from single-neuron stochasticity, neural dynamics on short time-scales, as well as from modulations of neural firing properties on long time-scales, often referred to as non-stationarity. To better understand the nature of co-variability in neural circuits and their impact on cortical information processing, we introduce a hierarchical dynamics model that is able to capture inter-trial modulations in firing rates, as well as neural population dynamics. We derive an algorithm for Bayesian Laplace propagation for fast posterior inference, and demonstrate that our model provides a better account of the structure of neural firing than existing stationary dynamics models, when applied to neural population recordings from primary visual cortex.