English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Perceptual Robotics

MPS-Authors
/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84298

Wallraven,  C
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84787

Giese,  MA
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Bülthoff, H., Wallraven, C., & Giese, M. (2016). Perceptual Robotics. In B. Siciliano, & O. Khatib (Eds.), Springer Handbook of Robotics: Part G (pp. 2095-2114). Berlin, Germany: Springer.


Cite as: http://hdl.handle.net/21.11116/0000-0000-7AC1-D
Abstract
Robots that share their environment with humans need to be able to recognize and manipulate objects and users, perform complex navigation tasks, and interpret and react to human emotional and communicative gestures. In all of these perceptual capabilities, the human brain, however, is still far ahead of robotic systems. Hence, taking clues from the way the human brain solves such complex perceptual tasks will help to design better robots. Similarly, once a robot interacts with humans, its behaviors and reactions will be judged by humans – movements of the robot, for example, should be fluid and graceful, and it should not evoke an eerie feeling when interacting with a user. In this chapter, we present Perceptual Robotics as the field of robotics that takes inspiration from perception research and neuroscience to, first, build better perceptual capabilities into robotic systems and, second, to validate the perceptual impact of robotic systems on the user.