Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

The anatomical substrate of precise timing in zebra finch HVC

MPG-Autoren
/persons/resource/persons84944

Narayanan,  RT
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84910

Oberlaender,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kornfeld, J., Benezra, S., Narayanan, R., Svara, F., Oberlaender, M., Denk, W., et al. (2016). The anatomical substrate of precise timing in zebra finch HVC. Poster presented at 46th Annual Meeting of the Society for Neuroscience (Neuroscience 2016), San Diego, CA, USA.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-7ADA-2
Zusammenfassung
The sequential activation of neurons has been observed during a range of behaviors and cognitive states and is central to many models of neural circuit function, but the synaptic connections enabling such dynamics are poorly understood. Song production in the zebra finch depends on a cortical region called HVC, which contains a major class of excitatory (HVC(RA)) neurons that fire action potential bursts in a fixed, sequential pattern during singing. These neurons not only project to downstream motor centers but also make numerous connections within HVC and could, therefore, form a sequence-generating synaptic chain. Evidence for this network architecture has, however, been either indirect or inconclusive. Here we employ light and transsynaptic electron microscopy to explore the synaptic connectivity of HVC(RA) neurons. We find that HVC(RA) cells receive the vast majority of their excitatory connections from distal sites on the axons of other HVC(RA) cells; proximal axonal sites, on the other hand, nearly always target inhibitory interneurons. Overall, this connectivity pattern provides evidence for a distributed excitatory synaptic chain supported by local inhibition, characteristic of coupled winner-take-all architectures.