Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Does action recognition suffer in a crowded environment?

MPG-Autoren
/persons/resource/persons192671

Fademrecht,  L
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214613

Nieuwenhuis,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83840

Bülthoff,  I
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Recognition & Categorization, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83877

de la Rosa,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Social & Spatial Cognition, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fademrecht, L., Nieuwenhuis, J., Bülthoff, I., Barraclough, N., & de la Rosa, S. (2016). Does action recognition suffer in a crowded environment?. Poster presented at 16th Annual Meeting of the Vision Sciences Society (VSS 2016), St. Pete Beach, FL, USA.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-7B22-0
Zusammenfassung
In real life humans need to recognize actions even if the actor is surrounded by a crowd of people but little is known about action recognition in cluttered environments. In the current study, we investigated whether a crowd influences action recognition with an adaptation paradigm. Using life-sized moving stimuli presented on a panoramic display, 16 participants adapted to either a hug or a clap action and subsequently viewed an ambiguous test stimulus (a morph between both adaptors). The task was to categorize the test stimulus as either ‘clap’ or ‘hug’. The change in perception of the ambiguous action due to adaptation is referred to as an ‘adaptation aftereffect’. We tested the influence of a cluttered background (a crowd of people) on the adaptation aftereffect under three experimental conditions: ‘no crowd’, ‘static crowd’ and ‘moving crowd’. Additionally, we tested the adaptation effect at 0° and 40° eccentricity. Participants showed a significant adaptation aftereffect at both eccentricities (p < .001). The results reveal that the presence of a crowd (static or moving) has no influence on the action adaptation effect (p = .07), neither in central vision nor in peripheral vision. Our results suggest that action recognition mechanisms and action adaptation aftereffects are robust even in complex and distracting environments.