English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Dense Statistical Connectome of Rat Barrel Cortex

MPS-Authors
/persons/resource/persons214520

Udvary,  D
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84931

Egger,  R
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84910

Oberlaender,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Ressource

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Udvary, D., Egger, R., Dercksen, V., & Oberlaender, M. (2016). Dense Statistical Connectome of Rat Barrel Cortex. Poster presented at Barrel Cortex Function 2016, Amsterdam, The Netherlands.


Cite as: http://hdl.handle.net/21.11116/0000-0000-7B7E-A
Abstract
Synaptic connectivity is one important constrain for cortical signal flow and function. Consequently, a complete synaptic connectivity map (i.e., connectome) of a cortical area across spatial scales would advance our understanding of cortex organization and function. We present a dense statistical connectome of the entire rat vibrissal cortex based on measured 3D distributions of axons/dendrites/somata of excitatory and inhibitory neurons. By calculating the structural overlap between pre- and postsynaptic cells our model provides quantitative estimates on connectivity measurements like connection probability and number of synapses on cell type, cellular, and subcellular levels. We found that our model reproduces connectivity measurements between thalamic and excitatory/inhibitory neurons reported in paired recordings and light- and electron-microscopic studies. Similarly, intracortical synaptic connectivity of our model matches most connectivity measurements. However, the location and distance between pre- and postsynaptic cells and - in case of slicing experiments - the degree of truncation strongly influences the connectivity. When reproducing electronmicroscopic and in vitro slicing experiments in our model, we found that measurements obtained under the respective experimental conditions are in line with our model's results, but represent only a small fraction of the underlying distribution. The experimental conditions such as the small volume analyzed in electron-microscopic studies or the truncation of morphologies thus biases the conclusions that are drawn, e.g. an underestimation of the connection probability. Our approach can therefore be used to improve experimental design and seen as a starting point to simulate sensory-evoked signal flow and investigate structural and functional organization of the cortex.