English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

A Ratiometric Bioresponsive MRI Contrast Agent for Rapid Monitoring of Biological Processes

MPS-Authors
/persons/resource/persons214962

Savić,  T
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192632

Gündüz,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83784

Angelovski,  G
Research Group MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Savić, T., Gündüz, S., Pohmann, R., Logothetis, N., Scheffler, K., & Angelovski, G. (2016). A Ratiometric Bioresponsive MRI Contrast Agent for Rapid Monitoring of Biological Processes. Poster presented at 24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2016), Singapore.


Cite as: http://hdl.handle.net/21.11116/0000-0000-7B90-3
Abstract
A number of bioresponsive MRI contrast agents have been developed, with the aim of producing the maximal signal difference for a given biological event. This paper introduces an approach which substantially improves the detection of physiological events with fast kinetics. A nanosized, calcium-sensitive dendrimeric probe was developed and characterized by means of a balanced steady-state free precession imaging protocol. Results show an almost four times greater contrast gain per unit of time as compared to conventional T1-weighted imaging with small sized contrast agents. Consequently, this ratiometric methodology has a profound significance for future studies of biological dynamic processes by means of MRI.