Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Downfield MR Spectroscopy at Ultrahigh Magnetic Fields

MPG-Autoren
/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192635

Giapitzakis,  I
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133464

Avdievich,  N
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fichtner, N., Henning, A., Giapitzakis, I., Zoelch, N., Avdievich, N., Boesch, C., et al. (2016). Downfield MR Spectroscopy at Ultrahigh Magnetic Fields. Poster presented at 11th Annual Meeting Brain Connectivity, Bern, Switzerland.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-7BBB-4
Zusammenfassung
Introduction: Magnetic resonance spectroscopy benefits from using ultrahigh field scanners, as both the signal to noise ratio (SNR) and the separation of peaks improve. Inclusion of the downfield part of the spectrum (left of water peak) in addition to the generally used upfield part of the 1H MR spectrum is expected to allow for better monitoring of pathologies and metabolism in humans. The downfield part at 5-10ppm is less well characterized than the upfield spectrum, although some data is available for animal brain at high fields, as well as human brain at 3T. Experiments have been performed to elucidate the downfield spectrum in human brain and to quantify metabolite relaxation times T1 and T2 in grey matter at 7T using series of spectra with variable inversion recovery (IR) and echo time (TE) delays. Initial downfield experiments have also been performed in humans at 9.4T. Materials and Methods: Acquisition methods at 7T used a Philips 7T whole body scanner (UZH/ETH Zürich), with a voxel of interest placed in the visual cortex. A series of TEs and IRs was acquired in a total of 22 healthy volunteers. At 9.4T, spectra were acquired in three healthy volunteers on a Siemens whole-body MRI scanner (MPI Tuebingen). Results and Discussion: The spectra acquired at 7T and 9.4T demonstrate significant improvements in SNR and peak separation compared to those at lower field strengths. The averaged data sets from the 7T series were combined to develop a spectral model of partially overlapping signals this heuristic model describes the experimental data well and the results for many of the peaks are very consistent across subjects. T1 values found at 7T are mostly higher than those found at 3T, in particular for the NAA peak. Several peaks show a particularly short T1 in comparison to the others, indicating that they predominantly originate from macromolecules. The T2 values are in general much shorter than those found for upfield peaks.