日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

講演

Information-theoretic bounded rationality in perception-action systems

MPS-Authors
/persons/resource/persons84447

Genewein,  T
Research Group Sensorimotor Learning and Decision-Making, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Sensorimotor Learning and Decision-making, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource

Link
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Genewein, T. (2016). Information-theoretic bounded rationality in perception-action systems. Talk presented at ICRA 2016 Workshop on Task-Driven Perceptual Representations: Sensing, Planning and Control under Resource Constraints. Stockholm, Sweden.


引用: https://hdl.handle.net/21.11116/0000-0000-7CC2-A
要旨
The ability to form abstractions and to generalize well from few samples are hallmarks of human and animal intelligence underlying the unrivaled flexibility of behavior in biological systems. Achieving such flexibility in artificial systems is challenging, particularly because the underlying computational principles are not fully understood. This talk introduces an information-theoretic framework for bounded rational decision-making, that is optimal decision-making under limited computational resources. One consequence of acting optimally under computational limitations is the emergence of natural abstractions which allow for more efficient processing of information. The consequent application of the theoretical framework to perception-action systems results in an interesting optimality principle that leads to a tight coupling between perception and action. As a result, the objective of bounded-optimal perception is not to represent a sensory state as faithfully as possible, but rather to extract the most relevant information for bounded-optimal acting.