Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

A Comparison of Optimization Algorithms for Localized in-vivo B0 Shimming

MPG-Autoren
/persons/resource/persons192740

Nassirpour,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192839

Chang,  YC
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nassirpour, S., Chang, Y., Fillmer, A., & Henning, A. (2016). A Comparison of Optimization Algorithms for Localized in-vivo B0 Shimming. In 24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2016).


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-7CC4-8
Zusammenfassung
This work presents a study on the performance of several least-squares optimization algorithms used for localized in-vivo B0 shimming. Seven different algorithms were tested in 4 different shim volumes in the brain: global shimming region, single slice, and single voxels in two different positions with 3rd order shimming at 7T. Each algorithm's robustness and convergence were tested against noisy inputs and different starting values. The results give an interesting overview of the properties of each algorithm and their applicability. The regularized iterative inversion algorithm proves to be the best algorithmic approach suited to this problem.