English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

Fast B0 first order inhomogeneity estimation using radial acquisition

MPS-Authors
/persons/resource/persons192852

Aghaeifar,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84372

Loktyushin,  A
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84405

Mirkes,  C
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84257

Thielscher,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Ressource

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Aghaeifar, A., Loktyushin, A., Mirkes, C., Thielscher, A., & Scheffler, K. (2016). Fast B0 first order inhomogeneity estimation using radial acquisition. In 24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2016).


Cite as: http://hdl.handle.net/21.11116/0000-0000-7CCC-0
Abstract
B0 field inhomogeneity is a major source of distortion in MR images. Current approaches to dynamic shimming require extra acquisition time or external hardware. We propose a method that estimates first order shim errors by using projections of radial acquisition. The errors can be estimated from three projections multiple times in each measurement, which makes the method highly robust. The proposed method is evaluated in simulation and in vivo. Obtained results show a strong agreement between applied and measured first order shim errors.