Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Ultra low field magnetic resonance imaging for the investigation of hyperpolarized contrast agents

MPG-Autoren
/persons/resource/persons214710

Antkowiak,  P
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133443

Buckenmaier,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rudolph, M., Misztal, T., Antkowiak, P., Meyer, H., Kleiner, R., Koelle, D., et al. (2016). Ultra low field magnetic resonance imaging for the investigation of hyperpolarized contrast agents. In 80. Jahrestagung der DPG und DPG-Frühjahrstagung.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-7D0C-8
Zusammenfassung
In NMR/MRI experiments at ultra low magnetic fields hyperpolarization techniques based on parahydrogen (pH2) could offer a simple way to circumvent the lack of the low equilibrium polarization of the sample. A chemical exchange reaction, taking place at B0 fields in the mT range, transfers polarized spins from pH2 via a transfer catalyst to the sample. This transfer reaction can enhance the sample polarization in B0 fields in the mT range by a factor of 105, offering sample polarizations comparable to polarization fields of 103-104 T. To investigate these newly developed techniques a SQUID based NMR/MRI system operating at a static magnetic field in the mT range is being developed. By using a SQUID for detecting the NMR Signal, the system can benefit from its very low intrinsic noise level. Additionally, SQUIDs are wide band detectors and can detect the signal of multiple kernels simultaneously. A design of an ultra low field MRI system and first results will be presented.