English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Fermionization of two distinguishable fermions

MPS-Authors
/persons/resource/persons31034

Serwane,  Friedhelm
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Zürn, G., Serwane, F., Lompe, T., Wenz, A. N., Ries, M. G., Bohn, J. E., et al. (2012). Fermionization of two distinguishable fermions. Physical Review Letters, 108: 075303, pp. 1-5. doi:10.1103/PhysRevLett.108.075303.


Cite as: http://hdl.handle.net/21.11116/0000-0000-7E02-1
Abstract
We study a system of two distinguishable fermions in a 1D harmonic potential. This system has the exceptional property that there is an analytic solution for arbitrary values of the interparticle interaction. We tune the interaction strength and compare the measured properties of the system to the theoretical prediction. For diverging interaction strength, the energy and square modulus of the wave function for two distinguishable particles are the same as for a system of two noninteracting identical fermions. This is referred to as fermionization. We have observed this phenomenon by directly comparing two distinguishable fermions with diverging interaction strength with two identical fermions in the same potential. We observe good agreement between experiment and theory. By adding more particles our system can be used as a quantum simulator for more complex systems where no theoretical solution is available.