Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis

MPG-Autoren
/persons/resource/persons210515

Kleiner,  Manuel
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210745

Sayavedra,  Lizbeth
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210670

Petersen,  Jillian M.
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210343

Dubilier,  Nicole
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Kleiner_01_16.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ponnudurai, R., Kleiner, M., Sayavedra, L., Petersen, J. M., Moche, M., Otto, A., et al. (2017). Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME JOURNAL, 11(2), 463-477. doi:10.1038/ismej.2016.124.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-C1F5-0
Zusammenfassung
The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners. Our study revealed that key metabolic functions are most likely accomplished jointly by B. azoricus and its symbionts: (1) CO2 is pre-concentrated by the host for carbon fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing symbiont. In return (3), the sulfur oxidizer may compensate for the host's putative deficiency in amino acid and cofactor biosynthesis. We also identified numerous 'symbiosis-specific' host proteins by comparing symbiont-containing and symbiont-free host tissues and symbiont fractions. These proteins included a large complement of host digestive enzymes in the gill that are likely involved in symbiont digestion and carbon transfer from the symbionts to the host.