English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

How does information from low and high spatial frequencies interact during scene categorization?

MPS-Authors
/persons/resource/persons187993

Kauffmann,  Louise
Department of Psychology, Université Grenoble Alpes, France;
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Kauffmann_2017.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kauffmann, L., Roux-Sibilon, A., Beffara, B., Mermillod, M., Guyader, N., & Peyrin, C. (2017). How does information from low and high spatial frequencies interact during scene categorization? Visual Cognition, 25(9-10), 853-867. doi:10.1080/13506285.2017.1347590.


Cite as: https://hdl.handle.net/21.11116/0000-0000-8158-B
Abstract
Current models of visual perception suggest that, during scene categorization, low spatial frequencies (LSF) are rapidly processed and activate plausible interpretations of visual input. This coarse analysis would be used to guide subsequent processing of high spatial frequencies (HSF). The present study aimed to further examine how information from LSF and HSF interact and influence each other during scene categorization. In a first experimental session, participants had to categorize LSF and HSF filtered scenes belonging to two different semantic categories (artificial vs. natural). In a second experimental session, we used hybrid scenes as stimuli made by combining LSF and HSF from two different scenes which were semantically similar or dissimilar. Half of the participants categorized LSF scenes in hybrids, and the other half categorized HSF scenes in hybrids. Stimuli were presented for 30 or 100 ms. Session 1 results showed better performance for LSF than HSF scene categorization. Session 2 scene categorization was faster when participants attended and categorized LSF than HSF scene in hybrids. The semantic interference of a semantically dissimilar HSF scene on LSF scene categorization was greater than the semantic interference of a semantically dissimilar LSF scene on HSF scene categorization, irrespective of exposure duration. These results suggest a LSF advantage for scene categorization, and highlight the prominent role of HSF information when there is uncertainty about the visual stimulus, in order to disentangle between alternative interpretations.