Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines

MPG-Autoren
/persons/resource/persons216321

Halimeh,  Jad C.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zauner-Stauber, V., & Halimeh, J. C. (2017). Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines. Physical Review E, 96(6): 062118. doi:10.1103/PhysRevE.96.062118.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-81B4-2
Zusammenfassung
Using the framework of infinite matrix product states, the existence of an anomalous dynamical phase for the transverse-field Ising chain with sufficiently long-range interactions was first reported in J. C. Halimeh and V. Zauner-Stauber [Phys. Rev. B 96, 134427 (2017)], where it was shown that anomalous cusps arise in the Loschmidt-echo return rate for sufficiently small quenches within the ferromagnetic phase. In this work we further probe the nature of the anomalous phase through calculating the corresponding Fisher-zero lines in the complex time plane. We find that these Fisher-zero lines exhibit a qualitative difference in their behavior, where, unlike in the case of the regular phase, some of them terminate before intersecting the imaginary axis, indicating the existence of smooth peaks in the return rate preceding the cusps. Additionally, we discuss in detail the infinite matrix product state time-evolution method used to calculate Fisher zeros and the Loschmidt-echo return rate using the matrix product state transfer matrix. Our work sheds further light on the nature of the anomalous phase in the long-range transverse-field Ising chain, while the numerical treatment presented can be applied to more general quantum spin chains.