日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups

MPS-Authors
/persons/resource/persons22071

Schlögl,  Robert
Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion , Stiftstr. 34 - 36 45470 Mülheim an der Ruhr, Germany;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Düngen, P., Schlögl, R., & Heumann, S. (2018). Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups. Carbon, 130, 614-622. doi:10.1016/j.carbon.2018.01.047.


引用: https://hdl.handle.net/21.11116/0000-0000-AE52-0
要旨
Thermogravimetric mass spectrometry (TG-MS) is an established way to analyze oxygen containing surface functional groups of carbon materials. Thermal stabilities and structures of functional groups influence their decomposition temperatures and products (CO, CO2). In this work, a non-linear procedure with isothermal steps is presented enabling a separation of functional groups by different decomposition temperatures. Nitrosulfuric acid functionalized carbon materials like multi-walled carbon nanotubes (MWCNT) and graphite were used to design the temperature program. Comparative studies of linear and non-linear heating experiments in argon and hydrogen containing atmosphere were performed to state the benefits and limits of both methods. The distinct advantage of non-linear thermal analysis is demonstrated by an application-oriented experiment where only selected functional groups are consumed.