English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Differences in the negative allosteric modulation of gamma-aminobutyric acid receptors elicited by 4'-chlorodiazepam and by a beta-carboline-3-carboxylate ester: a study with natural and reconstituted receptors

MPS-Authors
/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Puia, G., Santi, M. R., Pritchett, D. B., Seeburg, P. H., & Costa, E. (1989). Differences in the negative allosteric modulation of gamma-aminobutyric acid receptors elicited by 4'-chlorodiazepam and by a beta-carboline-3-carboxylate ester: a study with natural and reconstituted receptors. Proceedings of the National Academy of Sciences of the United States of America, 86(18), 7275-7279. Retrieved from http://www.pnas.org/content/86/18/7275.


Cite as: https://hdl.handle.net/21.11116/0000-0000-854B-6
Abstract
Cl- currents elicited by gamma-aminobutyric acid (GABA) application were recorded with the whole-cell tight-seal technique from voltage-clamped cortical neurons of neonatal rats in primary culture. The peripheral benzodiazepine recognition site ligand 4'-chlorodiazepam [Ro 5-4864; 7-chloro-1,3-dihydro-1-methyl-5-(4-chlorophenyl)-2H-[1,4]-benzodiazep in-2- one] inhibited the GABA-generated currents in a dose-dependent manner. Also, a beta-carboline (DMCM; 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate methyl ester), acting as a negative allosteric modulator of GABAA receptors, reduced the intensity of GABA-generated currents with similar efficacy but greater potency. Flumazenil (Ro 15-1788; 8-fluro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo-[1,5-a] [1,4]-benzodiazepine-3-carboxylate ethyl ester) antagonized DMCM inhibition but not that elicited by 4'-chlorodiazepam. The isoquinoline carboxamide PK 11195, an antagonist of 4'-chlorodiazepam effects in other systems, failed to antagonize the action of 4'-chlorodiazepam. The transient expression of various molecular forms of GABAA receptors in the human embryonic kidney cell line 293 allowed a study of the minimal structural requirements for the inhibition of GABA-induced Cl- currents by bicuculline, picrotoxin, 4'-chlorodiazepam, and DMCM. GABA-elicited Cl- currents in cells coexpressing alpha 1 and beta 1 subunits of GABAA receptors were inhibited by bicuculline and picrotoxin, but not by DMCM or 4'-chlorodiazepam. Conversely, the GABA currents in cells coexpressing alpha 1 beta 1 and gamma 2 subunits were inhibited by bicuculline, picrotoxin, 4'-chlorodiazepam, and DMCM. Since the Cl- currents generated by GABA in some molecular forms of GABAA receptors are inhibited by bicuculline and picrotoxin only, 4'-chlorodiazepam cannot be acting isosterically with picrotoxin.