English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Two novel GABAA receptor subunits exist in distinct neuronal subpopulations

MPS-Authors
/persons/resource/persons93759

Killisch,  Iris
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Rolf Sprengel Group, Max Planck Institute for Medical Research, Max Planck Society;
Olfaction Web, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93954

Köhler,  Martin
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Köhler, M., Schofield, P. R., et al. (1989). Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron, 3(3), 327-337. doi:10.1016/0896-6273(89)90257-2.


Cite as: http://hdl.handle.net/21.11116/0000-0000-855D-2
Abstract
Two cDNAs encoding novel GABAA receptor subunits were isolated from a rat brain library. These subunits, gamma 2 and delta, share approximately 35% sequence identity with alpha and beta subunits and form functional GABA-gated chloride channels when expressed alone in vitro. The gamma 2 subunit is the rat homolog of the human gamma 2 subunit recently shown to be important for benzodiazepine pharmacology. Cellular localization of the mRNAs encoding the gamma 2 and delta subunits in rat brain revealed that largely distinct neuronal subpopulations express the two subunits. The delta subunit distribution resembles that of the high affinity GABAA receptor labeled with [3H]muscimol; the gamma 2 subunit distribution resembles that of GABAA/benzodiazepine receptors labeled with [3H]flunitrazepam. These findings have implications for the composition of two different GABAA receptor subtypes and for information processing in networks using GABA for signaling.