English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pressure-induced Lifshitz transition in NbP: Raman, x-ray diffraction, electrical transport, and density functional theory

MPS-Authors
/persons/resource/persons126847

Shekhar,  C.
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons192595

Qi,  Yanpeng
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons129064

Naumov,  Pavel G.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126748

Medvedev,  Sergey A.
Sergiy Medvediev, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Gupta, S. N., Singh, A., Pal, K., Muthu, D. V. S., Shekhar, C., Qi, Y., et al. (2018). Pressure-induced Lifshitz transition in NbP: Raman, x-ray diffraction, electrical transport, and density functional theory. Physical Review B, 97(6): 064102, pp. 1-9. doi:10.1103/PhysRevB.97.064102.


Cite as: http://hdl.handle.net/21.11116/0000-0000-878A-C
Abstract
We report high-pressure Raman, synchrotron x-ray diffraction, and electrical transport studies on Weyl semimetals NbP and TaP along with first-principles density functional theoretical (DFT) analysis. The frequencies of first-order Raman modes of NbP harden with increasing pressure and exhibit a slope change at P-c similar to 9GPa. The pressure-dependent resistivity exhibits a minimum at P-c. The temperature coefficient of resistivity below Pc is positive as expected for semimetals but changes significantly in the high-pressure phase. Using DFT calculations, we show that these anomalies are associated with a pressure-induced Lifshitz transition, which involves the appearance of electron and hole pockets in its electronic structure. In contrast, the results of Raman and synchrotron x-ray diffraction experiments on TaP and DFT calculations show that TaP is quite robust under pressure and does not undergo any phase transition.