English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Admittance-Adaptive Model-Based Approach to Mitigate Biodynamic Feedthrough

MPS-Authors
/persons/resource/persons84279

Venrooij,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Venrooij, J., Mulder, M., Mulder, M., Abbink, D., van Paassen, M., van der Helm, F., et al. (2017). Admittance-Adaptive Model-Based Approach to Mitigate Biodynamic Feedthrough. IEEE Transactions on Cybernetics, 47(12), 4169-4181. doi:10.1109/TCYB.2016.2601638.


Cite as: https://hdl.handle.net/21.11116/0000-0000-C260-8
Abstract
Biodynamic feedthrough (BDFT) refers to the feedthrough of vehicle accelerations through the human body, leading to involuntary control device inputs. BDFT impairs control performance in a large range of vehicles under various circumstances. Research shows that BDFT strongly depends on adaptations in the neuromuscular admittance dynamics of the human body. This paper proposes a model-based approach of BDFT mitigation that accounts for these neuromuscular adaptations. The method was tested, as proof-of-concept, in an experiment where participants inside a motion simulator controlled a simulated vehicle through a virtual tunnel. Through evaluating tracking performance and control effort with and without motion disturbance active and with and without cancellation active, the effectiveness of the cancellation was evaluated. Results show that the cancellation approach is successful: the detrimental effects of BDFT were largely removed.