English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The locus coeruleus is a complex and differentiated neuromodulatory system

MPS-Authors
/persons/resource/persons192680

Totah,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84105

Neves,  RM
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83895

Eschenko,  O
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Totah, N., Neves, R., Panzeri, S., Logothetis, N., & Eschenko, O. (2018). The locus coeruleus is a complex and differentiated neuromodulatory system. Neuron, 99(5), 1055-1068. doi:10.1016/j.neuron.2018.07.037.


Cite as: http://hdl.handle.net/21.11116/0000-0000-C27C-A
Abstract
Understanding the forebrain neuromodulation by the noradrenergic locus coeruleus (LC) is fundamental for cognitive and systems neuroscience. The diffuse projections of individual LC neurons and presumably their synchronous spiking have long been perceived as features of the global nature of noradrenergic neuromodulation. Yet, the commonly referenced "synchrony" underlying global neuromodulation, has never been assessed in a large population, nor has it been related to projection target specificity. Here, we recorded up to 52 single units simultaneously (3164 unit pairs in total) in rat LC and characterized projections by stimulating 15 forebrain sites. Spike count correlations were surprisingly low and only 13 of pairwise spike trains had synchronized spontaneous discharge. Notably, even noxious sensory stimulation did not activate the population, only evoking synchronized responses in 1.6 of units on each trial. We also identified novel infra-slow (0.01-1 Hz) fluctuations of LC unit spiking that were asynchronous across the population. A minority, synchronized possibly by gap junctions, has restricted (non-global) forebrain projection patterns. Finally, we characterized two types of LC single units differing by waveform shape, propensity for synchronization, and interactions with cortex. These cell types formed finely-structured ensembles. Our findings suggest that the LC may convey a highly complex, differentiated, and potentially target-specific neuromodulatory signal.