English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The sensorimotor system minimizes prediction error for object lifting when the object's weight is uncertain

MPS-Authors
/persons/resource/persons214501

Thaler,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Brooks, J., & Thaler, A. (2017). The sensorimotor system minimizes prediction error for object lifting when the object's weight is uncertain. Journal of Neurophysiology, 118(2), 649-651. doi:10.1152/jn.00232.2017.


Cite as: http://hdl.handle.net/21.11116/0000-0000-C2CC-F
Abstract
A reliable mechanism to predict the heaviness of an object is important for manipulating an object under environmental uncertainty. Recently, Cashaback et al. (Journal of Neurophysiol 117: 260-274, 2017) showed that for object lifting, the sensorimotor system uses a strategy that minimizes prediction error when the object's weight is uncertain. Previous research demonstrates that visually guided reaching is similarly optimised. Although this suggests a unified strategy of the sensorimotor system for object manipulation, the selected strategy appears to be task dependent and subject to change in response to the degree of environmental uncertainty.